

BUT WHAT FORM OF FORMALDEHYDE?

- The DPX formation constant determined by Heck et al. (1988) was in aqueous solution and is based on the *total* concentration of added formaldehyde
- > 99.9% of HCHO in aqueous solution is in the form of methanediol: CH₂(OH)₂
- Since the rate of DPX formation is proportional to the *total* [HCHO], it must either reflect methanediol as the reactant or that the rate of dehydration is not rate limiting
- Either way, it relates the formation of DPX to the total amount of formaldehyde available to react with DNA
- Hence the observed ¹⁴C-DPX data can tell us the average tissue concentration of "available" HCHO from exogenous exposure that can react with DNA
- The calibrated Conolly et al. (2001) model (or other calibrated models) can then be used
 to interpolate between DPX observations to determine tissue levels for other exposure
 concentrations

COMPARING ENDOGENOUS AND EXOGENOUS FORMALDEHYDE

- The data from Dr. Swenberg's lab for N²-hydroxymethyl-deoxyguanine (dG) presumably also indicate the relative levels of formaldehyde "available" to react with DNA
- For the data I analyzed, I had to effectively extrapolate from 6-h exogenous dG data to compare to "continuous exposure" endogenous dG data
- This extrapolation indicates that the level of endogenous dG adducts are equivalent to an
 exogenous exposure of 1-2 ppm
- From the Conolly et al. (2000)/Heck et al. (1988) calibration parameters, the corresponding average tissue concentration of "available" endogenous formaldehyde is $\sim 10~\mu M$
- This suggests that, if all of the reported / measured tissue HCHO (~ 400 µM) or blood HCHO (~ 83 µM) where as "available" as exogenously delivered HCHO, the endogenous dG adduct levels would be much higher than observed

- This analysis effectively assumes that methanediol is part of the pool "available" to damage DNA and react with other cellular components – cause toxicity and/or cancer
- The analysis assumes that the relative exogenous/endogenous levels of dG adducts from Dr.
 Swenberg's lab reflect the relative dosimetry...
- But we also need to account for the fact that exogenous exposures which generate those levels are not 24/7
- Doing so, it appears that a large fraction of "measurable" endogenous HCHO is NOT "available" to react with DNA
- But there IS a fraction of endogenous HCHO which is "available" and biologically indistinguishable from exogenous HCHO